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We present the basic formulas for a unified treatment of the correlation 
functions of the hydrodynamic variables in a fluid between two horizontal plates 
which is exposed to a stationary heat flux in the presence of a gravity field 
(Rayleigh-B6nard system). Our analysis is based on fluctuating hydrodynamics. 
In this paper (I) we show that in the nonequilibrium stationary state the 
hydrodynamic fluctuations evolve on slow and fast time scales that are widely 
separated. A time scale perturbation theory is used to diagonalize the 
hydrodynamic operator partially. This enables us to derive the eigenvalue 
equations for the nonequilibrium hydrodynamic modes. Therein we take into 
account the variation of the macroscopic quantities with position. The 
correlation functions are formally expressed in terms of the nonequilibrium 
modes, In paper II the slow hydrodynamic modes (viscous and viscoheat 
modes) will be determined explicitly for ideal heat-conducting plates with stick 
boundary conditions and used to compute the slow part of the correlation 
functions; in paper III the fast hydrodynamic modes (sound modes) will be 
explicitly determined for stick boundary conditions and used to compute the 
fast part of the correlation functions. In these papers we will also compute the 
shape and intensity of the lines measured in light scattering experiments. 

KEY WORDS: Nonequilibrium stationary state; Rayleigh B6nard system; 
fluctuations; correlation functions; fluctuating hydrodynamics; fast and slow 
variables; time scale perturbation theory; nonequilibrium hydrodynamic modes. 

1. I N T R O D U C T I O N  

F l u c t u a t i o n s  in fluids a w a y  f r o m  t h e r m a l  e q u i l i b r i u m  h a v e  been  of  con-  

s iderab le  in te res t  s ince a n u m b e r  o f  years.  As an  e x a m p l e  of  a n o n -  
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equilibrium fluid we will discuss here the Rayleigh-B6nard system: a simple 
fluid in a gravity field confined between two horizontal plates which are 
maintained at different temperatures so that the fluid is exposed to a 
stationary heat flux. We want to study the correlation functions in this 
system and discuss in particular situations where the boundary conditions 
and the variation of the macroscopic hydrodynamic quantities with 
position have to be taken into account. 

Three methods have been applied in the literature to compute the 
correlation functions in the nonequilibrium stationary state: kinetic 
theory,(1) mode-coupling theory, ~ and fluctuating hydrodynamics. (5) The 
first two approaches start on a microscopic level to arrive at 
hydrodynamiclike equations for the correlation functions. In kinetic theory 
(which is only valid at low densities) this is achieved by the Chap- 
man-Enskog method, while in mode-coupling theory projection operator 
techniques are employed. The third approach is more phenomenological. It 
assumes that the theory of fluctuating hydrodynamics as proposed by Lan- 
dau and Lifshitz (6) to compute fluctuations around thermal equilibrium can 
be extended in a simple way to a nonequilibrium stationary state. Formal 
arguments to justify the application of fluctuating hydrodynamics to non- 
equilibrium stationary states have been given, based on mode-coupling 
theory, (7) on kinetic theory, (8) on a Fokker-Planck equation, (9) and on a 
master equation approach/1~ 

For small temperature gradients one can use perturbation theories 
around equilibrium, m 16) For large gradients the problem becomes more 
difficult, firstly because one can no longer use perturbation theory and 
secondly because one must take into account that the average quantities 
depend on position. The temperature gradient itself is not constant since 
the thermal conductivity depends on the local temperature. Kirkpatrick, 
Cohen, and Dorfman (17) were the first to compute the density-density 
correlation function for large gradients with kinetic and with mode- 
coupling theory. Measurements of the intensities of the Brillouin lines in 
the light-scattering spectrum are consistent with their results318) 

In solving their equations Kirkpatrick et al. use the hydrodynamic 
modes from thermal equilibrium. Although this procedure is well suited for 
the linear regime, it requires infinite resummation methods for large tem- 
perature gradients. Clearly the use of different normal modes which are 
adapted to the actual nonequilibrium situation would make the calculation 
much more transparent. Several authors have already computed a subset of 
these nonequilibrium modes with no (19a) or with simplified boundary 
conditions (2e~2z) in order to discuss the central line in the light-scattering 
experiments or the convective instability. 

In this series, which consists of three papers (hereafter referred to as I, 
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II, Ill), we present a unified treatment of the correlation functions based on 
fluctuating hydrodynamics. Not only the densitymlensity correlation 
function, relevant for light-scattering experiments, but all the 
hydrodynamic correlation functions will be discussed systematically. They 
are not only of interest for the transport theory far from equilibrium, (23-24) 
but, in addition, the velocity-velocity correlation function can be observed 
directly by laser-Doppler velocimetry. In our calculations we will use the 
nonequilibrium hydrodynamic modes which will be determined explicitly 
for realistic boundary conditions. While the theories mentioned above (19-22~ 
are based on the Boussinesq approximation (25) of the hydrodynamic 
equations, and thus neglect the sound modes, we will discuss also these for 
the first time in a system where the spatial variation of the average quan- 
tities as well as the boundary conditions have to be taken into account 
explicitly. This solves the as yet open problem of the influence of the boun- 
daries on the Brillouin lines in the presence of a large temperature 
gradient/17) The case of a small temperature gradient, when a linear theory 
applies, has been discussed by Satten and Ronis (19b) and later in Ref. 12. 
These calculations are also consistent with the experiments of Ref. 18. A 
further discussion of the Brillouin lines in the presence of large gradients 
and boundaries is given in paper III. We remark that the nonequilibrium 
modes are interesting for their own sake, since they have a direct physical 
interpretation as collective phenomena. Moreover, they can be used to 
compute properties of the fluid other than correlation functions. 

The first paper, which contains the general theory for arbitrary tem- 
perature profiles, has two main purposes: first, we demonstrate in the par- 
ticular nonequilibrium system considered here that fluctuating 
hydrodynamics leads to the same equations for the correlation functions as 
mode-coupling theory and, for a dilute gas, kinetic theory do. This will 
supplement the more formal investigations in Refs. 7 and 8. Second, we 
derive the equations for the nonequilibrium modes by generalizing time- 
scaling methods from irreversible thermodynamics./26) This technique is 
based on the fact that hydrodynamic processes evolve on two widely 
separated time scales: a fast time scale which is characterized by the speed 
of sound and a slow scale characterized by the speed of friction and heat 
diffusion processes or the speed of convective heating by flow perturbations 
in the presence of the macroscopic temperature gradient. The equations for 
the slow modes are identical to the linearized Boussinesq equations, (25) 
while those for the fast variables describe the sound modes. 

In papers II and III we will then separately discuss the slow and fast 
processes and their contributions to the correlation functions taking into 
account the boundary conditions on the plates. In later publications we 
will also investigate fluids under stationary stress. 
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The plan of I is as follows: In Section 2 we describe the stationary 
state and the symmetry properties of the correlation functions, Then, in 
Section 3, we summarize the basic ideas of fluctuating hydrodynamics as 
they are relevant for our developments. In Section 4 we consider the equal- 
time correlation matrix and argue that it has a long-range part away from 
thermal equilibrium. We derive an equation from which this long-range 
part can be determined. In Sections 5 and 6 we discuss the hydrodynamic 
operator which is obtained by linearizing the hydrodynamic equations 
around the stationary state solution. We identify slow and fast variables 
and decouple these two sets by a time scale perturbation theory. These 
results allow us in Section 7 to derive the eigenvalue equations for the non- 
equilibrium hydrodynamic modes, which are the viscous, the viscoheat, 
and the sound modes. In Section 8 we compute formally the correlation 
matrix of the hydrodynamic variables in terms of these nonequilibrium 
modes. At the end we briefly summarize the main results. 

2. C O R R E L A T I O N  F U N C T I O N S  

We consider a simple fluid in a homogeneous gravity field g. The 
macroscopic behavior of the fluid is described by the nonlinear 
hydrodynamic equations. (27) In view of the boundary conditions to be 
applied it is most convenient to choose the pressure p(r, t), the temperature 
T(r, t), and the flow velocity u(r, t) as the independent hydrodynamic 
variables. Then the equations read 

7 - 1  c~P + u. Vp = - T V . u + ~ ( t : V u - V . q )  
~?t Xr 

c3T 7--1 1 
- - + u - V T -  - - V ' u +  ('~: V u - V -  q) 
Ot ~ pCv 

du +1 
?-7+ u.Vu = - ! V p  v . ~ + g  (2.1) 

P P 

where p, c~, )~r, cv and y-= cJcv  are the mass density, the thermal expan- 
sion coefficient, the isothermal compressibility, the specific heat at constant 
volume per unit mass, and the ratio of the specific heats at constant 
pressure and constant volume, respectively. Furthermore ~ and q are the 
dissipative part of the stress tensor and the heat flux, respectively, given by 
the linear phenomenologieal laws 

= 2t /Vu + ~V- ul  
(2.2) 

q = -2VT 
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where~u  is the symmetric and traceless part of Vu, and q, ~, 2 are the shear 
viscosity, bulk viscosity, and thermal conductivity, respectively. The ther- 
modynamic quantities p, c~, )~r, Cv, cp, as well as the transport coefficients 
t/, ~, 2 in Eqs. (2.1) and (2.2) all depend on p(r, t) and T(r, t) via the local 
equations of state. 

The fluid is confined between two horizontal, infinite planes of dis- 
tance d which have different temperatures T1 and 7"2, respectively. We 
assume that these temperatures are uniformly distributed on the plates and 
constant in time and that the fluid has reached a stationary state with 
vanishing flow velocity u (no convection). It is convenient to choose a Car- 
tesian coordinate system such that gravity acts in the negative z direction, 
i.e., g = -gez ,  and the plates are located at z = -d /2  and z = +d/2. Then, 
according to (2.1) and (2.2), the pressure and temperature in the fluid have 
one-dimensional profiles, p(z) and T(z), which follow from the ordinary, 
nonlinear equations 

dp 
dz t- gp = 0 (2.3a) 

and the boundary conditions 

d dT 
~zz 2-~-z = 0 (2.3b) 

p(d/2) = P2 (2.4) 

T ( - d / 2 )  = T,, T(d/2) = T 2 

where P2 is the outside pressure. 
Assuming the macroscopic fields p(z) and T(z), together with u = 0, 

are given, we address ourselves now to the spontaneous thermal fluc- 
tuations around the steady state solution. We restrict ourselves to the 
properties of the fluctuations on hydrodynamic scales only, i.e., the 
behavior averaged over lengths and times which are large compared to the 
mean free path and the mean free time between successive collisions of the 
fluid particles. The hydrodynamic length scale may (but need not) be much 
smaller than the macroscopic length scale which is of the order 
Lv~-[(1/a)(da/dz)J -1, where a(z )=a[p( z ) ,T ( z ) ]  stands for the 
macroscopic quantity which varies most with position. In order to study 
the fluctuations on hydrodynamic scales we describe the fluctuations 
phenomenologically by a stochastic process. Then the fluctuations in the 
independent hydrodynamic variables, i.e., the fluctuations in the pressure 
@(r, t), in the temperature fiT(r, t), and in the flow velocity fiu(r, t), are the 
basic stochastic variables. They are defined to be the deviations of the 
actual values of the pressure, the temperature, and the flow velocity at 
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point r and time t (on the hydrodynamic scales) from their macroscopic 
values, i.e. p(z), T(z), and u = 0. For convenience we will use the vector 
notation 

6 a =  6T (2.5) 

6u 

referring to the components of fia as the p, 7", and u components, respec- 
tively, and denoting them by Greek indices. Averages over the probability 
distribution functions underlying the stochastic process in the non- 
equilibrium steady state will be denoted by ( ' " ) ~ .  Then, by definition, 

(6a(r,  t)),~ = 0 (2.6) 

We wish to compute the correlation matrix which is defined as 

M(rl, tl; r2, t2)= (6a(r l ,  tl)6a(r2, t2))~ (2.7) 

From (2.7) follows immediately 

M(r2, t2;rl, tx) = Mr(r1, tl;r2, t2) (2.8) 

where M r is the transposed matrix of M. Since the averages are stationary, 
as well as translationally and rotationally invariant in the x-y  plane, it 
follows furthermore that the correlation matrix depends only on 
t = t l - t 2 ,  r = ( 1 - e ~ e z ) ' ( r l - r 2 ) = ( x l - x 2 ,  y l - y 2 , 0 ) ,  zl and z2 in the 
following manner(28): 

M,~(rl, tl;  r2, t2) = g=r zl, z2; t) 

M, . ( r l ,  tl; r2, t2) = f~lez + fa2rlL 

IV] uu(rl, t 1 ; r2, t2) = hi(1 - e~e~) + h2eze= + h3~[i ~ II 

h4e~fLL + hs~kLe~ (2.9) 

(~, fl = p, r) 

(~ = p, T) 

h~(rll, zl, z2; t ) =  -h4(rll, z2, zl;  - t )  (2.10) 

Hence to determine the complete hydrodynamic correlation matrix 
M(rl, t l ; r2,  t2) for all times tl, t2 it is sufficient to compute the 11 scalar 
functions gpp, gpT, grr, fpl, fp2, frl ,  fr2, hi, h2, h3, and h4 for times t >~ 0. 

where fll =rjrll and g~ ,  f~l, f~2, hi ..... h5 are scalar functions of rll = Irlll, 
zl, z2, and t. Using (2.8) we obtain the symmetry relation 
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3. FLUCTUATING HYDRODYNAMICS 

In order to compute the correlation matrix, i.e., the functions 
gpp,...,h4, we will use the theory of fluctuating hydrodynamics (6~ as 
generalized to fluctuations around a nonequilibrium stationary state.~5) The 
basic ideas as they are relevant for our later developments will be sum- 
marized now. 

The equations for the stochastic process describing the fluctuations 
~a(r, t) of the hydrodynamic variables consist of a systematic and a ran- 
dom part: 

0 
c~t 3a(r, t )=  - .~(r) .  6a(r, t )+  6F(r, t) (3.1) 

One assumes that the systematic evolution is governed by the linear 
hydrodynamic operator .~(r) (acting on functions of r) which is obtained 
from the nonlinear hydrodynamic equations (2.1), (2.2) by linearization 
around the stationary state solution p(z), T(z), given by Eqs. (2.3), (2.4), 
and u = 0. 3 The explicit expression for 55(r) will be given in the next section. 
The random force term 6F(r, t) in (3.1) represents the overall effect due to 
the coupling of nonhydrodynamic degrees of freedom to the hydrodynamic 
fluctuations. 

To compute the correlation matrix (2.7) one does not need to know all 
the details of the random forces, but only make a few assumptions concern- 
ing their stochastic properties. These are 

(6F(r, t)) , ,  = 0 (3.2a) 

(~F(r~, t~) cSF(r2, t2)),, = r ( r l ,  r2) 6(t~- t2) (3.2b) 

Equation (3.2a) holds by definition. (3.2b) express the basic postulate that 
6F is a stationary Markov process on the hydrodynamic time scale. This is 
physically quite reasonable because the nonhydrodynamic variables should 
have no memory on hydrodynamic scales. The covariance matrix F(rl, r2) 
will be determined below. 

In order to derive equations for the correlation matrix one first solves 
Eq. (3.1) formally for times t~ >/t2. Suppressing space arguments the result 
is 

6a(tl)=li(tl-t2).6a(t2)+ ll(t l-r).6F(z)dz (tl>~t:) (3.3) 
2 

where 
lI(t) = exp(--~t)  (t~>0) (3.4) 

3 Linearizing around the steady state is a reasonable procedure not too close to a critical 
point or a hydrodynamic instability, since then the fluctuations are small in amplitude. 
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is the time-evolution operator. Multiplying (3.3) from the right by ha(t2) 
and averaging yields 

M(t l ,  t2) = lt(tl - t2)' M(t2, t2) (tl >~ t2) (3.5) 

where (2.7) and (3.2a) have been used. In (3.5) the operator 11 acts only on 
functions of rl. Furthermore we obtain from (3.3), (3.2b), (3.2c) and 
stationarity 

M~,(t2, t2) = ~ ( t l  - t2) ~//~z(tl - / 2 )  M~z(t2, t2) 

+ ~q ~/g~(t I -- I:) ~p6(tl -- ~) d~ F~6 (3.6) 
t 2 

where on the right-hand side (r.h.s.) the first II acts on r~, while the second 
one acts on r2, and summation convent is used, as in the rest of the paper. 
Finally, differentiating (3.5) and (3.6) with respect to tl and setting in the 
latter equation t~ = t2, yields the following two equations for the unequal- 
and equal-time correlation matrices: 

t~t-'-'~ M(r l '  tl ; r2' t2) = - -~ ( r l )  ' M(r l '  tl ; r2 '  /2) (tl > t2) (3.7) 

and 

Yf~(rl) M~( r l ,  t2; r2, tz)+Yf~7(rz)M~(rl, t2; r2, t2) = F~r r2) (3.8) 

respectively. Solving Eqs. (3.7) and (3.8) one can find expressions for the 
correlation matrix M in terms of the still unknown covariance matrix F for 
all times tl >~ t2, and, applying (2.8), also for tl < t2. 

The covariance matrix F(rl ,  t2, r2) could be determined from (3.8) if 
the equal-time correlation matrix M(rl, r2, t2) were known. However, this 
is only the case in thermal equilibrium. Therefore one proceeds as follows. 
First one computes the covariance matrix Feq in thermal equilibrium by 
inserting in the left-hand side (1.h.s.) of (3.8) the hydrodynamic operator 
~r and the equal-time correlation matrix Meq from thermal equilibrium. 
Then one postulates that the nonequilibrium F can be obtained from Fcq 
by replacing all the equilibrium quantities (i.e., the thermodynamic and 
transport coefficients) appearing in Feq as parameters by their position- 
dependent steady state values. By this postulate one archieves ~29) (i) that 
the correlation lengths of the random forces are of microscopic order (like 
in equilibrium) and (ii) that the random forces in a point r~ behave 
statistically as if they were embedded in an equilibrium environment 
characterized by the local values" of the steady state quantities. The 
property (ii) is consistent with the fact that the macroscopic fields effec- 
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tively do not change over microscopic distances, i.e., over the correlation 
lengths of the random forces. 

To compute F we therefore start from the equal-time correlation 
matrix M eq in thermal equilibrium. Here the correlation length is of 
microscopic order (assuming we are away from a critical point), i.e., on 
hydrodynamic length scales M~q is short-range, 

Me q( r l ,  /2; r2, t2) -= A(rl, r2) = A (~ 6(rl - r 2 )  (3.9) 

A (~ = k B T 

with(30),(31) 
r _~ 7 _  1 0 

ZT c~ 

7 - t  T 
0 

c~ pc  v 

1 
0 0 - 1  

< P 

(3.10) 

(3Qi(r l ,  tl) 6Qj(r2, t 2 ) ) eq  

(3Q~(r~, t~) 3Tk,(r2, t2))eq 

(6Tu(rl ,  tl) 3Tkl(r2, t2))eq 

= 2 k 8  T2)~6ij6(r1 --  r2) 6(t~ --  t2) 

= 0  

= 2kB  T [ ~ ( 6 i k h j t  + (Sit6jk -- 2 ~gugkt)  

+ ~606k~ ] 6(r~ -- rz) 6(t~ --  t2) (3.12) 

4 That 6F can be written in this form follows from the conservation laws of mass, momentum, 
and energy in the fluid. ~6) 

where kB is the Boltzmann constant. Using now -~eq [the explicit 
expression of which can easily be obtained as a special case of 
Eqs. (4.5)-(4.8) below] one can straightforwardly compute ]-'eq from 
(3.8)-(3.10). 

It turns out that all matrix elements of Feq(rl, r2) are proportional to 
V~V~ 6 ( r l - r2 ) .  In order to replace the equilibrium parameters in Feq by 
their corresponding position-dependent steady state quantities it is 
therefore convenient to determine first from ['eq the correlation properties 
of the random heat flux 6Q and the random stress tensor 6T which are 
defined by 4 

~ -  ~T-~ V- 6Q-  

1 
6 F =  - V.~SQ (3.11) 

p c v  

1 V . 6 T  
P 

One thus finds the Landau-Lifshitz expressions (6) 
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where latin indices denote Cartesian vector components. It is these 
relations (3.12) which are now generalized to the nonequilibrium case by 
postulating that the values of the temperature T and the transport coef- 
ficients r/, ~, 2 have to be taken in the point r~. 

Finally, in order to find the nonequilibrium covariance matrix 
F(r~, r2), one inserts (3.11) into (3.2b) and uses the local version of (3.12). 
The result appears in its most symmetrical form when one transforms from 
r~ and r2 to the center of mass and the relative coordinates 

R =  �89 +r2),  r = r l - r 2  (3.13) 

Then one finds F as a sum of three terms 

r ( r , ,  r2) = F(~ 026(r) + FI1)(Rz) 0i0(r) + F(2)(R~) 6(r) (3.14) 

where the first term on the r.h.s, is identical to the equilibrium expression, 
the average quantities being taken in Rz, while FI 1) and F (2) are corrections 
of first resp. second order in the gradient 8/8Rz. 

Although explicit expressions for Fb ~ FI 1), and F (2) in terms of the 
thermodynamic and transport quantities can be given, we will not do so 
here because, as we will see later, F~ ~ will cancel and F} ~) and F (2) can be 
neglected. 

We will .now go back to Eq. (3.8) and discuss the equal-time 
correlation matrix M(rl,  re; r:, t2). 

4. E Q U A L - T I M E  C O R R E L A T I O N  M A T R I X  

Instead of solving Eq. (3.8) directly for the equal-time correlation 
matrix it is convenient to split M(rl, t2; r2, t2) into two parts: 

M(rl,  t2; r2, t2) = A(rl, r2) + D(rt, r2) 

where 
A(rt, r2) = A(~ a(rl -- r2) 

(4.1) 

is the short-range, local equilibrium correlation matrix, while D(rl, r2) 
vanishes in equilibrium, and, as we will see below, is long range. A(~ is 
given by (3.10) with the prescription that the values of the equilibrium 
quantities T, p, e, )~r, Cv, 7 have to be replaced by their corresponding 
steady state quantities taken in the point rl. Owing to stationarity, 
M(r~, t2;r2, t2) and, hence, D(rl ,  r2) do not depend on t 2. Inserting the 
ansatz (4.1) into (3.8) we obtain for D(rl, r2) the equation 

~ ( r l ) D r a ( r l ,  r 2 ) + ~ ( r 2 ) D = ~ ( r l ,  r2)=  - B ~ ( r l ,  r2) (4.3) 

(4.2) 
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where 

B~/~(rl, r2) = o~( r , )  A~(r, ,  r2) + JW~7(r2) A=~(rl, r2) - F=~(rl, r2) (4.4) 

To compute B(rl, r2) we split the hydrodynamic operator ~ ( r )  into 
an Euler- and a Navier-Stokes part which can be deduced from linearizing 
the reversible and the dissipative parts, respectively, of the nonlinear 
hydrodynamic equations (2.1), (2.2) around the stationary state solution: 

~(r )  = ~(r )  + 91(r) (4.5) 

The Euler operator reads explicitly 

e(r)  - 

0 0 L~T V -- gp% l 
0 0 ~ ' - l v + - ~  - e ~ c ~  

1 V + gz re= - gc~e~ 0 
P 

(4.6) 

while, for brevity, we give the Navier-Stokes operator in the form 

9~(r). 6a = 

~ 7 - 1 V . 3 q  
~T 

1 
V'Sq 

pcv 
1 V.6~ 
P 

(4.7) 

with 

6q=-2V6T- ~P r61~ ~-~ p6 -~ze~ (4.8a) 

6~ = 2q ~7~u + ~V" 6u 1 (4.8b) 

In (4.6)-(4.8) the values of the steady state quantities 
P, ~, Zz, Cv, 7, dT/dz, 2, r/, ~, (#2/0p)T and (~?2/c?T)p have to be taken in the 
point r. After inserting of (4.5) into (4.4), B(rl, r2) consists of three con- 
tributions 

B = C + A - F  (4.9) 
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which are given by 

C=~(rl, r2) = g=~(rl) A~e + ~3~(r2) A~ (4.10) 

A=/~(rl, r2) = ~ ( r , )  AT~ + ~ ( r 2 )  A=~ (4.11) 

and (3.14). 
In calculating C(rl, r2) we find that all the gravity terms cancel. Non- 

vanishing contributions arise for two reasons: (i) because of the term 
(dT/dz)  e~ in @ which originates from the nonlinear convection term u" VT 
in Eqs. (2.1) and (ii) because the local equilibrium matrix A(rl, r2) does 
not depend only on r~- r2 ,  as in equilibrium, but on both coordinates 
separately. We obtain from (4.10), (4.2), and (3.10) 

C ( r l ,  r2)= C(~ 6(rt - r2 )  

with 

'- 0 0 

(4.12) 

d T  
C (~ = k~ -d-Tz 0 0 

pc~ 

7 ~ T +  7 - 1 
e~ e z 0 

PZT P~ 

e z 
PZT 

~ T +  7 - 1 
e .  (4.13) 

A(rl, r2) can be computed straightforwardly. Expressing the result in 
the center of mass and relative coordinates [Eq. (3.13)] one obtains an 
expression of the form 

A(r~, r2) = A,~~ 026(r) + A~t)(Rz) ~i6(r) + A(2)(R~) 6(r) (4.14) 

where the terms on the r.h.s, are of zeroth, first, and second order in the 
gradient O/(?Rz, respectively. Since we will not need explicit expressions for 
A!9), A!I/ and A (2/we will not give them here. The zeroth-order term is just 

/J  z 

the equilibrium expression, the average quantities being taken in Rz. Hence 
it follows from (4.9), (3.14), and (4.14) 

Ab~ = F~~ (4.15) 

since in equilibrium B, C and all gradients with respect to R~ vanish. 
Using the Eqs. (3.14), (4.14), and (4.15) in (4.9) we find 

B(rl, r2) = C(rl, r2) + A}I)(Rz) ai6(r) + A(Z)(Rz) 6(r) (4.16) 

where C is given by (4.12), (4.13) and A~)= A~--F~ ~, A(2)= A(2)--F ~2). 
The first two terms on the r.h.s, of (4.16) are of first order in ~3/OR~, the 
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third one is of second order. Inserting the expression (4.16) into (4.3), one 
has now an equation from which D(rl, r2) can be computed. 

We shall end this section with a few remarks: 

1. At this stage we can already argue that the solution D(r~, H) of 
Eq. (4.3) is a long-range function of the relative coordinate r = r l - r  2. 
Expressing, namely, the 1.h.s. of (4.3) in terms of r and R yields a second- 
order differential equation in r space. The inhomogeneity B, on the other 
hand, contains only terms proportional to 6(r) and V6(r). Equation (4.3) is 
therefore similar to the Poisson equation V2~b = 4~z6(r). No short-range ~b or 
D, i.e., no functions proportional to 8(r), or derivatives thereof, can be 
special solutions of such equations. Finally, the homogeneous part of (4.3) 
has no short-range solutions either, since it has no nontrivial solutions, 
because 5 is a strictly positive operator. 

2. Long-range correlations at equal times do not appear as a con- 
sequence of the inhomogeneity of the macroscopic state alone. For exam- 
ple, turning off the heat flux, but keeping the gravity field yields a state of 
inhomogeneous equilibrium with d p / d z r  but with zero entropy 
production. 5 Then B vanishes, so that still D =0.  Therefore long-range 
correlations at equal time require a true nonequilibrium macroscopic state. 

3. The equation (4.3) for D, derived here from fluctuating 
hydrodynamics, is identical with that derived in Ref. 1 from mode-coupling 
theory in the absence of the gravity field (when the so-called mode-coupl- 
ing amplitudes are computed explicitly with the aid of Ref. 30). This 
follows form the fact that the terms A} 1) and A (2), which are proportional 
to the transport coefficients, can be neglected when compared to C(rl, r2), 
as we will see in Section 8. 

5. H Y D R O D Y N A M I C  O P E R A T O R  

In order to solve the equation (3.7) for the unequal-time correlation 
matrix and the equation (4.3) for the long-range part of equal-time 
correlation matrix we will use a spectral decomposition of the non- 
equilibrium hydrodynamic operator 5(r). Since 5 is not a symmetric 
operator one must distinguish a right- and left-eigenvalue problem: 

9 '  a~(r) = sKaf(r) (5.1a) 

5 t  �9 a~:(r) = s*a~:(r) (5.1b) 

5 A nonvanishing heat flux q = --2(dT/dz)ez [cf. Eq. (2.2)] forced upon the system by the 
boundary conditions (2.4) gives rise to a local entropy production (27) ~r = (2/Te)(dT/dz) 2 in 
the interior of the fluid. The pressure gradient caused by gravity does not produce entropy. 
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Here .~* is the adjoint operator of ~ [in the scalar product to be defined in 
(5.2) below], K is a multi-index labelling the eigenmodes, SK is an eigen- 
value, s* its complex conjugate, and af:(r), a~(r) denote the right and left 
eigenvectors, respectively. We assume that the right and left eigenvectors 
form a complete biorthogonal system, i.e., 

(a~:, a~,) -= f a~*(r) - a~,(r) dr = 6xx. (5.2) 

a~(r) a~*(r')= 1 6 (r -  r') (5.3) 
K 

Since we are not able to solve the eigenvalue problem of ~ exactly, it 
is the aim of this and the following section to provide a method for an 
approximate, partial diagonalization of ~. This will be based on a 
separation of fast and slow time scales. 

Consider thereto the initial-value problem 

0 
at h(r, t) = - ~ ( r ) '  h(r, t) (t > 0) (5.4) 

with 

~(r, 0) = go(r) (5.5) 

a0(r) can be interpreted as a given small perturbation of the hydrodynamic 
fields from their stationary state values p(z), T(z), u =0,  caused by some 
external forces. Equation (5.4) describes then how this perturbation decays 
to zero when the external forces are turned off at time t = 0. 

The solution of the initial-value problem is complicated by the fact 
that the average quantities occurring in the operator .~ [-cf. 
Eqs. (4.5)-(4.8)3 depend on the z coordinate. Thus, in principle, Eq. (5.4) 
has no plane wave solutions in the z direction. However, for the 
applications we have in mind, we restrict ourselves here to those modes 
which can be described approximately by plane waves within horizontal 
fluid layers of thickness loWLy, where lo is chosen such that the spatial 
variation of the average quantities can be neglected within each layer. 6 The 
length scale on which the average quantities do vary is given by 
Lv ~ - [(1/a)(da/dz)] 1, where a(z)=a(p(z) ,  T(z)) stands for the average 
quantity which varies most with position. We will refer to Lv as the 
macroscopic length scale. 

6 In  a usual  Ray le igh -B6na rd  cell one  has d'~Lv and  can  therefore  set lo=d, i.e., one may  

neglect the spatial variation of the average quantities throughout the whole system, at least 
as far as the slow modes are concernedJ TM 
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Therefore we can choose on the z axis a reference point R~ in the fluid 
and consider a horizontal fluid layer VRz of thickness l0 ~ Lv. Neglecting at 
first the boundary conditions we assume that for points r e VR~ the initial 
perturbation can be described by a plane wave 

~o(r) ~aok(R~) e ik-r (r~ VRz) (5.6) 

with a wave vector k = k(R~) such that 

Lvk~ >> lok~ > 1 (5.7) 

Then k is a "good quantum number" within the layer V&, so that, follow- 
ing the dynamics (5.4) for an infinitesimal time t, rio(r) will evolve into a 
state ~(r, t) that can be described within VR: as a wave with the same wave 
vector 

a(r, t )~ak(Rz,  t)e - i k r  ( re  VR~) (5.8) 

From the 5 x 5 system (5.4) follows that the amplitude ak(R~, t) can be 
expressed as a sum of five modes, all with wave vector k, that decay to zero 
according to certain, yet unknown, "local" eigenvalues skj(Rz)(j= 1,..., 5): 

5 

ak(Rz, t ) :  ~ Akj(Rz)e -sk:(&)t (5.9) 
j = l  

The real and imaginary part of ski are the damping constant and the fre- 
quency of t he j t h  mode, respectively, lira skj]/k is its "local" phase velocity. 
The mean-free path, defined as 

Jim ski] (5.10) 
lj(k) - k Re ski 

is a measure for the distance the wave can propagate before it is effectively 
damped to zero. If now k is chosen such that 

6(k)kz< k ~ l o ~ L v  (5.11) 

then points on the wave fronts of (5.8) will not be able to leave the layer 
VR~ during their lifetime and, conversely, no waves from a neighboring 
layer will penetrate into VRz. As we will see, there are sound modes moving 
in the z direction that violate condition (5.11). We will come back to this 
later. For simplicity we assume first that (5.11) holds. Then the ansatz (5.8) 
describes the time evolution of (5.6) within VRz for all times t > 0. 

822/39/3-4-3 
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Inserting thus (5.8) into (5.4) and using that the average quantities are 
approximately constant in VR~, we obtain the dynamical equation 

Q 
t3t ak(Rz, t ) =  -Hnz(k) .  ak(R~, t) ( t > 0 )  (5.12) 

where the hydrodynamic matrix H Rz(k) is found with the aid of (4.5)-(4.8) 
to read 7 

H R~(k)= 

0 cJ-?Drk2 iT-~--k - gpez 
ZT Zr 

? - 1 dT  
0 yDrk  2 i - -  k +-~-z e z 

i 1 , p k +  gzre~ -g~e~ v k 2 1 + ( F l - v ) k k  

(5.13) 

with the prescription that the values of the steady state quantities have to 
be taken in the reference point Rz. In (5.13) we have used the ther- 
modynamic identity e2T/pgT=Cp--Cv, and we have introduced the 
kinematic viscosity v, the longitudinal viscosity Fz, and the thermal dif- 
fusivity DT which are defined as 

~/ 4 2 
v = - ,  Fz=-~v+ ~-, D r = - -  (5.14) 

p p pcp 
respectively. 

In order to solve (5.12), or, equivalently, to determine the five "local" 
eigenvalues skj(R~)(j= 1,..., 5), of HRz(k) it is not convenient to use the 
Cartesian components of the flow velocity Uk as variables. Instead we 
express Uk in terms of the longitudinal potential ~bk and the z components 
Vk and Ck of the transversal velocity and the vorticity, respectively, i.e., we 
u s e  

k x (k • ez) i~ k k • ez (5.15) 
U k = i~bkk - Vk k~ t- k~ 

where 

and 
1 

~k = - - i ~  k u k (5.16a) 

( kk) 
vk=ez" 1--~-- y "Uk (5.I6b) 

~k = ie~' (k • uk) (5.16c) 

7 We assume that the second term in (4.8a) is small compared to the first term and can thus 
be neglected. 
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Multiplying the u component of (5.12) by e~' (k x ) one finds that the vor- 
ticity is decoupled from the other variables: 

8 
8t ~k = --vk2{k (5.17) 

Hence, one eigenvalue of-~e~(k) is 

Ski = v k  2 (5 ,18)  

The corresponding mode is called the viscous mode. 
The remaining four variables Pk, Tk, ~bk, and Vk, that determine the 

eigenvalues sk2,..., Sk5 are all coupled. To be able to compare the relative 
magnitudes of the various elements of .~(k) we rescale the variables in such 
a way that they all have the same dimension. The most natural way of 
doing so is to divide each variable by the square root of its local 
equilibrium correlation strength as given by (3.10). Thus we set 

P'=tT) pk, T== 
 k=W7,, 

T~ 
(5.19) 

In the following we will always denote scaled quantities with bars. In terms 
of the scaled variables the dynamical equations can be written in the form 

8 

where we have combined the temperature and the transversal velocity on 
the one hand, and the pressure and the longitudinal potential on the other 
hand, 

into separate subvectors for reasons which will become clear below. The 
elements of the scaled dynamical matrix are 

Rxx = 

TDTk 2 
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Hxy 

o - ck+,(u Tz-  

g~_k~ 0 
\ ck  2 

where 

[ [7(7_l)]~/2DTk 2 _g  ) 
c 

Hyx = I . f T'~ 1/2 kz 

/ . g k z \  1 

Hyy ~. . g k~'~ (1-  ) / 

is the local speed of sound. 

(5.22) 

7 ~1/2 
c = - -  (5.23) 

\P)(. T/ 

We will now identify fast and slow variables by estimating the various 
elements of H. Assuming that k lies in the regime 

kl ~k ~k2 (5.24) 

with k 1 ~ (1/c)(c v~ T) 1/2 (dT/dz) and k2 ~ c/D r one observes that the terms 
proportional to ck (which appear only in H xy and Ryy) are much larger 
than all the other elements. 8 These terms originate from the equilibrium 
part of the Euler operator (4.6). The upper bound k 2 ensures that the 
Navier- Stokes terms which are of the order Drk 2 are small compared to 
ok. Wave vectors of the order k2 probe spatial distances of the order of 
10 ~ which are too small to be treated hydrodynamically. The lower bound 
k~ ensures that the gradient term, (cv/T) m (dT/dz), be much smaller than 
ck. k~ is typically of the order liLy. Hence, the bounds (5.24) are no new 
restrictions on our theory, since they are consistent with (5.7) and with the 
limitations of a hydrodynamic treatment in general. 

Neglecting all terms that are much smaller than ek for a first estimate, 
one finds that the eigenvalues of R are either of the order zero or ok. This 
means that the dynamic processes described by Eq. (5.12) evolve on two 

8 If we choose  wa te r  under  no rma l  cond i t ions  ( T..~ 300 K, p ~ 1 a t m )  as an  example  of a typical  
l iquid,  we have~32~: ; ~ 1 ,  Dr~v~Fl~lO-2cm 2 sec -~, c ~ 1 0 s  cm sec -1, c ~ 3  x 1 0 - 4 K  -1, 
Cv,,~4 x 10 7 cm 2 sec -2  K 1. F u r t h e r m o r e  g = 103 cm sec -2. 
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widely separated time scales. ~Ia = lick is the characteristic unit on the fast 
time scale. 

If we follow the dynamics (5.12) for a time of order ~a, then the 
influence of f-tyy on the time evolution is of order unity, while Hxx is small, 
say of order e ~ I. More precisely, ~ is the largest of the ratios of the 
Navier-Stokes terms (e.g., DT-k 2) o r  (cv/T) ~/2 (dT/dz) (i.e., the rate of con- 
vective heating by flow perturbations) with respect to ck. Furthermore Hyx 
is of order e. This observation allows us to identify the two groups of 
variables, ff~ and 15k, as slow and fast variables, respectively. (26) There 
remains, however, a strong dynamical coupling between the slow and the 
fast variables because Hxy is of order unity. This means physically that the 
slow variables (e.g., Tk) are forced to participate in the fast motion (of/Sk, 
e.g.), although the slow variables hardly influence the fast ones. 

6. T IME-SCALE PERTURBATION THEORY 

It is possible (26) to diminish the coupling between the slow and the fast 
variables by applying a transformation T 

which can be chosen such that the new dynamical matrix H ' =  T. H. T - I  
has the form 

Iq'--- + e  _, _, (6.2) ' 

- - /  

where F', S" ..... , Syy are all of the order ck. The coupling between fast and 
slow variables is now not anymore of order l, but of order e < 1. The trans- 
formation reads 

with (( )1j2 0) 
~z = (6.4) 

0 0 
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or, in terms of the unscaled variables 

aT t 
= T k  - -  p k ,  vk  = 

P'k = Ck 

(6.5) 

The new slow variable T~, is proportional to the entropy Sk per unit mass: 
T'k = (T/cp) Sk, which is well known to be true when one linearizes around 
thermal equilibrium. 

In order to diagonalize partially R we will now apply a time-scale per- 
turbation theory, following Geigenmtiller et aL (26) This will allow us to 
derive decoupled systems of equations that determine the slow and fast 
eigenvalues separately. These eigenvalues describe the motion of the slow 
variables on the slow time scale and that of the fast variables on the fast 
time scale, and give systematic corrections to both on slower and slower 
time scales, corresponding to higher and higher orders in e. We will now 
outline the procedure. 

First we observe that the matrix 

0 

has the eigenvalues + ick and -ick.  Thus, R'(k) has two large eigenvalues 
of the order ck and two small ones of the order e" ck. Denoting the small 
eigenvalues of H'(k) by sk2, sk3 and the large ones by sk4, sk5 we write the 
time-evolution operator formally as 

e-H ' (k) t - - - -  2 e Skjt-R--L*AkjAkj Ar ~ ~ (6.7) ~kj" "kj 
j=2,3  j=4 ,5  

--R --L where Akj and Akj are the normalized right and left eigenvectors of H'(k), 
respectively. The second term in (6.7) describes rapid oscillations which 
average to zero on the slow time scale Zsl-- (l/e) Zfa" 

Define by 

P =  Z ~R~L* (6.8) kj kj 
j = l , 2  

the projector on the "slow" subspace, i.e., the space spanned by the eigen- 
vectors corresponding to the small eigenvalues. On the slow time scale ~$1 
only solutions - '  - '  Ak = (xk, ~q,) satisfying 

A'k = Pk " A~ (6.9) 
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contribute to the dynamics. Using that p 2 =  p, Eq. (6.9) allows us to 
express the fast variables formally in terms of the slow ones as 

- '  - '  - - '  (6.10) Yk = Rsl Xk 

where R'st = Pyx' Pxx I is a so-called reconstruction operator. Inserting (6.10) 
into the transformed dynamical equations (5.20) one can eliminate Yl, and 
derive a reduced dynamical equation 

0 
63t '~  = -FI 'sl(k) �9 x~ (6.1i) 

which describes the motion of the slow variables on the slow time scale. 
For the reduced dynamical matrix one obtains then 

- - r  - - /  

Fl'sl = ~(~ 'x  + S~y. R,,) (6.12) 

Inserting (6.10)-(6.12) into (5.20) one obtains also an equation for the 
reconstruction operator: 

- - t  - - ;  - - t  t 
�9 R's,) F ' .  - '  - '  = sSy x + - ,  (Sxx q- Sxy" Rsl " +  ~Syy" Rsl eRs, (6.13) 

This equation can be solved iteratively in powers of e: 

~ t  - - t  2 Rs~ = _~(~ , ) -1 .  Syx + (P(e) (6.14) 

Ak In a similar way one can ask for the solutions - '  of the dynamical 
equation which lie in the "fast" subspace, i.e., the space spanned by the 
eigenvectors corresponding to the large eigenvalues: 

Ai,= Q. Aj, (6.15) 

where 0 = 1 -  P. Equation (6.t5) allows us to eliminate the slow variables 

- - t  iJ, = Rfa "~'i, (6.16) 

where the reconstruction operator is formally defined by R~a = Oxy" O ~  1. 
Inserting (6.15) into the dynamical equations, one derives the reduced 
equation 

0 - !  - - !  

0---] yk = -Hra(k)  ' ~'i, (6.17) 

which describes the motion of the fast variables. The reduced dynamical 
matrix is 

- - t  ~ t  - - t  - - !  - - t  Hfa = F + e(Syy + Syx" Rfa)  (6.18) 
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and - '  Rra follows from 

--t  --t  -- t  --t  
~ S x x ,  - -  t - -  t a fa "  (F  t -{.- ,sSyy ~- ,sSy x �9 Rra) Rr. + ~S=y 

Solving (6.19) iteratively yields 

--t  
a f a  ~-- ~ , S x y  " ( F ' ) - 1  .ql_ ~ ( ~ 2 )  

(6.19) 

(6.20) 

Equations (6.11) and (6.17) are axact when the reconstruction operators 
are computed to all orders in e. Since e is very small for wavelengths in the 
regime (5.24) it is sufficient to determine the reduced matrices up to first 
order in e. In this approximation the reconstruction operators do not con- 
tribute to - '  HsL and - '  Hra. 

Transforming Eqs. (6.11) and (6.17) back to the unscaled variables x~ 
and y~, defined by (6.5), we find for the dynamical matrices to order 

and 9 

DTk d___T ) 
dz 

H's'(k) = l _a~k~  vk 2 
\ ~ k 2 

( y -  1) 

H~a(k) -- l 

P 

The eigenvalues sk2,..., sk5 can now 
i.e., the small eigenvalues, are 

(6.21) 

Drk 2  k2) 
Zr 

Ftk 2 
(6.22) 

easily be obtained. Those of (6.21), 

v + D T k 2 + V - D  T 2 [  1 4~g dTk~q 1/2 
Sk2,3 -- -~ _ _ ~ k  (v ----~r)2 ~z-z ~-g_] (6.23) 

In equilibrium (dT/dz = 0), (6.23) reduces to sk, 2 = vk 2 and sk,3 = Drk 2. 
These are the familiar eigenvalues of the viscous and the heat mode, respec- 
tively. In nonequilibrium, according to (6.23), there is a strong coupling 
between these modes (especially for small k), and we will therefore call 
them the viscoheat modes. 

The large eigenvalues, i.e., those of (6.22), are the sound modes. 
Treating the terms of order ~. ck, i.e., ( 7 - 1 ) D r k  2 and Ftk 2, in pertur- 
bation theory one finds 

sk4,5 = +ick + �89 2 (6.24) 

9 For the wavelengths considered here [cf. Eq. (5.24)] we can neglect the gravity terms in Ryy 
[cf. Eq. (5.22)] and, hence, also in H}a. 
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where 

C=r,+(~--I)DT (6.25) 

is the sound absorption coefficient. (6.24) has the same form as in 
equilibrium. 

To complete our "local" eigenvalue analysis we have finally to verify 
the basic condition (5.11) which restricts the mean-free path of a given 
mode to lengths such that the spatial variation of the average quantities 
can be neglected. For those modes for which (5.11) is violated we have to 
supplement (5.7) by a further restriction on the wave vector. First, the 
mean-free path of the viscous mode is zero, since its eigenvalue ski [cf. 
Eq. (5.18)] is real. Next, the viscoheat modes can have a nonvanishing 
mean-free path for dT/dz > 0 (heating from above). However, the real and 
imaginary parts of the eigenvalues sk2,3 are then both of the order e" ck 
and, hence, 12,3(k)~l/k~Lv. Finally, for the sound modes one has 
14,5(k) =2c/Fsk 2. To satisfy (5.11) we have thus to require that 

k~ [ 2 c  ~_~z) 1/2 
~> ~F~-~v (sound). (6.26) 

This restriction is actually rather severe, lO Therefore the method used in the 
last two sections to obtain the eigenvalues applies to the viscous and the 
viscoheat modes, but to the sound modes only as long as (6.26) holds. This 
excludes the physically interesting case of sound modes that pass through a 
number of layers before they are damped. In addition, boundary effects, 
which have been neglected so far, may become important for all modes. We 
will take these problems into account in the next section. 

7. N O N E Q U I L I B R I U M  M O D E S  

We are now in a position to reduce the general spectral problem (5.1) 
of the hydrodynamic operator ~(r) in real space (so that boundary con- 
ditions can be applied) to three separate eigenvalue problems for the 
viscous, the viscoheat, and the sound modes, respectively. In this section 
we will give the eigenvalue equations leaving their explicit solutions with 
the appropriate boundary conditions to papers II and Ill. 

From translational invariance in the x-y  plane follows that the eigen- 
vectors a~(r) and a~(r) of .~(r) are plane waves in the x and y directions 
characterized by some horizontal wave vector kfl =(k: , ,ky).  As in the 

10 For example, for water under normal conditions and a temperature gradient dT/dz = 50 K 
cm- ~ one has L v --_ 6 cm and, thus, 2c/FsLv~2000 cm- 1. 
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previous sections we will restrict ourselves to those modes which vary in 
the z direction on length scales loWLy. Then a condition like (5.7) holds 
still in the presence of boundaries if the wave number k~ is understood in a 
more qualitative sense as a measure for the periodicity of the mode in the 
z direction. The eigenvalue equations are then simply found by translating 
the results of the last section into real space, and replacing ik~ by d/dz. This 
is not true for the sound modes, however, unless the size of the system d is 
much smaller than Lv. If d does not satisfy this condition, the results 
derived in this way are only valid for wave vectors large enough to obey 
the condition (6.26), and one must in general take into account explicitly 
the variation of the average quantities with position. 

7.1. Viscous Modes 

We obtain the right-eigenvalue equation for the viscous modes for a 
given horizontal wave vector kll with (5.17): 

R z - R z ( 7 . 1 )  

In (7.1) we have introduced the operator 

d 2 
~ = k ]  dz 2 (7.2) 

The index v serves to indicate that we are dealing with the class of viscous 
modes; the index n, which is discrete because of the boundary conditions, 
labels the different viscous modes. The eigenvalues sv,k~, and eigenfunctions 
~k~,,~z) depend only on klL = IkLi I, owing to rotational invariance in the x-y  
plane. The right eigenvector R av.kH . can be expressed solely in terms of the 
vorticity ~,k~, since all other variables are not involved. Similarly, the left 
eigenvector av,kiinL is determined by the left eigenfunction ~Lv.k~t, which follows 
also from (7.1) since this equation is self-adjoint. We will give the results 
for the eigenvectors in terms of the old variables a =  (p, T, u). The flow 
velocity u =  (ux, Uy, uz) in Cartesian components is obtained from (5.15). 
Then ( 0 ) 

R r --  0 av,kEIn( ) -  eitCal~lr 
( V x e z )  R z ~v,~ll.( ) 

( o ) 
a Lkl,.(r ) 0 eikl l  rll 

~ (V x e~) L 

(7.3a) 

(7.3b) 
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respectively, where rll = (x, y). Note  that the differential operators act also 
on the exponential factors. 

7 .2 .  V i s c o h e a t  M o d e s  

From the four variables (6.5) only the slow ones, i.e., T~, and v~,, are 
involved in the viscoheat modes. Translating Eq. (6.21) for H'~(k) into real 
space and using that the pressure component is zero, we can write the 
coupled right-eigenvalue equations in terms of the untransformed tem- 
perature and the transversal velocity as 

( O ~  

- o ~ g k ~  

Tz {r %(zg { ) 
v~ ~ \ ~,,.(~)2 =s..~,,. \~v~,,.(z)/ 

(7.4) 

where 2 denotes the class of viscoheat modes and n is a discrete index label- 
ing the different viscoheat modes. Using (6.5) and (5.15) the right and left 
eigenvectors are 

/ 
a~klI~(r) = / 

\ 1 

/ 

a~k""(r) = t 1 
\ 

o ) 
Tf,~,,~ z ) e 'k " 

~T L \ 

L Z Tz'klr"( ) / 

V x (V x e~) v~,~,,~(z)/ 

(7.5a) 

e ikll' rll (7.5b) 

The left eigenfunctions T L v "5 ( ;-,k~ln, ~..k~n) follow from the adjoint eigenvalue 
problem of (7.4). In deriving (7.5b) we have used that the adjoint vectors 
a t transform with the matrix (Y l)t when "1 is the transformation given by 
(6.5). Thus the transformed variables are T* '=Tt ,  v t ' = v  t, p* '= 
p* + (o~T/pcp) T t, Ct' = q)t. Setting p* = 0, Ct = 0, one obtains a~Lkjl~. 

As in the previous section, the values of the steady state quantities in 
formulas (7.1), (7.3)-(7.5) must b e t a k e n  in a reference point Rz on the 
z axis in the center of the layer of height l0 under consideration and their 
spatial variation can be neglected therein. In the case d ~ L v  it is natural to 
choose the center Rz = 0 as the reference point. 
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7.3. Sound Modes 

As was noticed before, we may in general not simply translate the 
matrix H~ into real space in order to find the equations for the sound 
modes, unless d~  Lv. Especially waves propagating almost in the z direc- 
tion (k~k~) may cross several fluid layers of height lo before they are dam- 
ped. These modes will "feel" also the gradients of the average quantities. 
However, since the classification of the hydrodynamic variables into fast 
and slow ones holds for each layer in the fluid, it is also globally valid for 
the whole fluid. 11 

But we have to give up the assumption that the average quantities can 
effectively be treated as constants. To find the equations for the sound 
modes, we therefore start from the full hydrodynamic operator given by 
(4.5)-(4.8), substitute the transformed variables (6.5) into the equations 
and set the slow variables equal to zero. The resulting right-eigenvalue 
equations for the sound modes read then 

( . , ,  

p P 

(p,+,.(z) ) 
=S++_,klln ~,V2- R 0 + , k l l n ( Z )  J e iklb " rll (7.6) 

where the values of the steady state quantities have to be taken in the point 
R~. The indices _+ denote the two classes of sound modes, in particular the 
index + denotes the modes, the eigenvalues of which have a positive 
imaginary part, while - denotes those with negative imaginary part 
[-cf. (6.24)]. In deriving (7.6) we have neglected the extremely weak depen- 
dence of the heat conductivity on the pressure (see Ref. 32) and the gravity 
contribution (see footnote 9). The right and left eigenvectors are 

R 

i l 
a~,k,~(r)= -fi-~pp+_,k,,~(z) e 'k'l~'l (7.7a) 

\ 
~1 In practice, the cur-off for the mean-flee path, given by the finite d, excludes the 

pathological case that the change of the average quantities over the mean-free path is so 
large that the global classification into fast and slow variables breaks down. This 
pathological case would require that d>>Lv. However, under this condition the system is 
too far from equilibrium to stay in a laminar stationary state with u = 0. 
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,~ ] 
aL_+,k,,(r ) = O_ elk, ,ll (7.7b) 

z)] 
After all the eigenvalue equations (7.1), (7.4), and (7.6) have been 

solved with the appropriate boundary conditions, the eigenvectors (7.3), 
(7.5), and (7.7) must finally be normalized according to (5.2). The nor- 
malization conditions are 

fd/2 k 2 
L* R --  ~ (~nm - a/2 ~v'kll~v'kllm dz - (27r) (7.8a) 

for the viscous modes, 

|~a/z r . 1 dv~k n dvRk ,, L* R ] 
L L R ' tl,, , I] T;~,kll m dz {))..kiln U 2.kltm + - -  --~ T,Lkt]n ') --d/2 k~ dz dz 

1 
- (2=) 2 6,,~ (7.8b) 

for the viscoheat modes, and 

fd /2  ~ k 2 ~ L .  ~ R  ~.. d~L* d R 
, Vo,lql,, ,_,~,,ktlmj dz --d/2 L I[q" a'kllnWa 'kllm " dz dz 

1 
= (2n) 2 a,m 3~, (a, a'  = +, - ) (7.8c) 

for the sound modes, respectively. 

8. C A L C U L A T I O N  O F  T H E  C O R R E L A T I O N  M A T R I X  

The results of the previous sections allow us to derive more detailed 
expressions for the 11 scalar functions gpp . . . . .  h 4 which have been 
introduced in (2.9) from symmetry arguments alone. For this purpose we 
apply our nonequilibrium hydrodynamic modes to solve the equations 
(3.7) and (4.3) for the correlation matrix, that have been derived from fluc- 
tuating hydrodynamics. It is clear from the assumptions we have made 
above in deriving the eigenvalue equations that the results will then be 
valid quite generally for all distances r = r l - r 2  and all time intervals 
t = q - t 2  of hydrodynamic order, the only restriction being that 
]Z l --Zz] ~ l o 4 ~ L v .  

Thus we use (5.1)-(5.3) to solve Eq. (3.7) formally for t 1 ~> tz: 

M(rl, t 1 ;r2, t2) = ~ e-Sk(tl-t2)a~(rl) bx(r2) (tl ~> t2) (8.1) 
K 
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where 

bK(r2) = f a~*(r~)" M(rl, t2; r2, t2)dr1 (8.2) 

Inserting (4.1)-(4.3)into (8.2) and using again (5.1)-(5.3) yields 

L* ~ BKW a~,(r2 ) 
bK(r2) = A~~ aK (r2) -- , SK + SK-------~ (8.3) 

with the mode-coupling coefficients BKK' given by 

f f  L* L* BKK ,= B( r l ,  r2): a K ( r l )  aK, (r2) d r ld r2  (8.4) 

The contribution of the local equilibrium part A is represented in (8.1) as a 
sum over all the single eigenmodes, while the long-range part D is 
expressed as a double sum over all pairs of eigenmodes, K and K', which 
are coupled via the BKK" 

The mode-coupling coefficients BK~, consist of three contributions, 
according to (4.16). Their orders of magnitude can easily be estimated 

-L* e - i k . r  using the scaled variables (5.19) and that a k ~ . Then one finds that 
A~ 1) is of order e~  1 relative to C, while A (2) is even of order e/Lvkz~. 
Keeping only the leading order in e in the amplitude of the correlation 
matrix we can neglect the terms AI 1/and A (2) and set B(rl, r2)~C(r l ,  r2). 12 

Using (4.12) the mode-coupling coefficients are then 

I C(~ a~*(r) L* BKK' = aK, (r) dr (8.5) 

Inserting (4.13) and the left eigenvectors (7.3b) into (8.5), we find that 
BKK, = 0 if one of the modes is a viscous mode. Furthermore we see from 
(8.3) that the leading contributions to bk come from those combinations of 
modes where SK+SK' is small. Recalling (6.23), (6.24), one realizes that 
there are only two such combinations: (i) two viscoheat modes, since both 
their eigenvatues are of order e- ck, and (ii) a + and a - sound mode, or 
vice versa, since the large terms of order ck cancel. Keeping again only the 
leading order in e, we can ignore in (8.3) the remaining couplings between 
the modes + + ,  - - ,  2 + ,  and 2 - .  

On the basis of (8.1), (8.3), and (8.5), the correlation matrix can now 
be formally expressed in terms of the eigenvalues and the normalized eigen- 
functions of the viscous, the viscoheat, and the sound modes. Using the 

12 This proves the statement made at the end of Section 4. 
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explicit expressions (4.13), (7.5b), and (7.7b), the relevant mode-coupling 
coefficients BKK. arising from the + and - sound modes are 

. . . .  ' -  p + , ' , , ~  dz 11,kllm] (8.6a) 

while those from the viscoheat modes are 

f+d/2 V L* T L* ] dz (8.6b) TdT 
A,,m = '-"'L*LJ~.klinV2,klL ~_ 2kLn 2 k w '  

- d / 2  p d z  

Inserting (3.10), (7.5), and (7.7) into (8.3) we introduce 

7 T  L* ~ / ~ + n  Tm 7z+_,k,,.(z2)=~ P+_,<,.(z2)-(2~)2 L s ~ -  P~,ktlm (z2) 
m +_ ,kiln + ,kllm 

T L* 6 + n , +  m (J~,~,,m(Z2) (8.7a) 

A nm 
G.ku.(z2 ) = T2 T#L~,,.(z2) _ (2~) 2 s S ~ Tff"k('m(Z2) 

p g p  m 2.kn 2,kllm 

T z.* ~ A n m  
W;t,klln(Z2) = p V.Lkltn(Z2) - -  (2TC) 2 L S + S V~kllm(Z2) (8 .7b)  

m 2.kiln 2,kllm 

Using these functions one can compute M, or equivalently, the scalar 
f u n c t i o n s  gpp ..... h 4 according to (8.1). It is convenient to express M in 
terms of correlation functions which are generated either by the sound 
modes only or by the viscoheat modes only. Thus we set 

P(r,,zl,z2; t ) = k . 2 ~  f?dk,k,Jo(kl, r,) ~ e .... kllnt p RklFn ( Z1)  7~ a ,klln ( Z 2 ) 
n r + , -  

P'(r,l,Zl,Z2; t)=kB2rr ~,.f[ dk,lkllJo(k,,rl,) ~ e .... el'"tp:kn(Z,)l//a,k,.,(Z2), ,r 
n - u  r @,-  

~(rl,,Zl,Z2; t)=k.2~ ~ fodkl, kI, Jo(kllr,) E e .... q"'~:k,,.(z,) Oo.<,.(z2) 
~= + , -  

f o r  the soundmodes and (8.8a) 
2 

S(rl l ,Zl ,Zz; t )=kB~2rc~f? dkllkllJo(k,rll)e-Sa'k""tT~.l, ttn(zl)O,L.ql,(z2) 

C p __f o ~ e - -  s i " k  [] n S'(r,, zl. z2; t) = k~-~ 2n ~ dk~rkjrJo(k,r ,) T~.k,,.(zl)w~,<,dz:) 

e - -  S)'kllnt 

V(FII , Z1, Z2; t ) = k . 2 ~  ~. fo dkllkllJ~ k----~l r V~kHn(Zl)  W2'k[In(Z2) 

" (8.8b) 
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for the viscoheat modes. In addition, there is a contribution to (8.1) from 
the viscous modes. Therefore we also introduce 

f ~ e -- sv'kl[nt 
S(rlL, zl, z2; t) =kBT2~p ~ dk ,k ,Jo(k , r l l ) - -~ l  #,,R.k,,,(Zl) {,.L;t,,,(Z2) 

(8.8c) 

(8.8c) does not contain mode-coupling contributions. In (8.8) Jo(x) is the 
Bessel function of order zero. Furthermore P and S are just the 
pressure-pressure and,the entropy-entropy correlation functions, respec- 
tively, while Z is related to the vorticity-vorticity correlation function. We 
note that the functions P, P', and q~ average to zero on the slow time scale 
rsl. Using (8.8) we find in a straightforward manner: 

aT  
gpp = P, gpr = P pCp 

grr = c7 S + \pCp/-- P (8.9a) 

c? c? P' 
fp l=~z2P' ,  fp2 = ---~F I 

Ns'] 
fr2=~ -~fp2 &, &2S' (8.9b) 

- - - - - -  + 0 z - - ~  h i  --  --~r-~r~ rll 63rll 

h2-ozlOz~2Cb+L\Orll r ii / ~-77r, V 

~2 VI 

kar,, 7 F &-Trl~-~z2 V (8.9c) 

In (8.7)-(8.9) the values of the steady state quantities p, T, e, Xr, cp, ~ are 
to be taken in the reference point Rz of the layer of height l o to which z, 
and z2 belong. From (8.9) and the symmetry relation (2.10) one can find all 
the elements of the hydrodynamic correlation matrix M(rt,  t l ; r2,  t2) for 
times t~ >~ t 2 and tt < t2. 
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9. CONCLUSIONS 

a. In this paper we have developed a formal theory for the 
correlation functions (6a(rl, tl) 6a(r2, t z ) ) s  s in a fluid which is exposed to 
a stationary heat flux in the z direction, parallel to the gravity field. Our 
results hold for all distances [rl-r2] and time intervals I t l - - t z [  of 
hydrodynamic order with the restriction that ]Zl-Z21 does not exceed a 
length lo which is small on the macroscopic length scale Lv. 

b. Applying fluctuating hydrodynamics we have argued that the 
equal-time correlation matrix contains a long-range part which vanishes in 
equilibrium. These long-range correlations are caused by the nonlinear 
convection term and by the spatial inhomogenity of the macroscopic 
variables in the steady state solution around which one linearizes. 

c. In solving the equations for the correlation matrix we have made 
extensive use of the fact that the hydrodynamic operator .~(r) contains a 
small parameter e = rsl/rfa ~ 1. This allowed us to diagonalize .~(r) partially 
into three separate eigenvalue problems for the viscous, the viscoheat, and 
the sound modes. 

d. We have treated the temporal behavior of the correlationfunctions 
up to first order in e, so that evolution processes on the fast as well as on 
the slow timescale are described. The amplitudes have only been taken into 
account to leading order in e. To this order in e there are only couplings 
between two nonequilibrium sound modes of opposite sign (+ and - )  or 
between two viscoheat modes. It are only these mode-couplings that con- 
tribute to the correlation matrix M(rl, tl; r2, t2), in addition to the local 
equilibrium contributions. 

e. In papers II and III, the formal expressions for gpp . . . . .  h4 will be 
evaluated explicitly by solving the equations for the hydrodynamic modes 
for a number of cases. 
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